# Mathematical OpenType Fonts

This GitHub repository provides various style sheets for mathematical fonts, together with Web fonts for those under an open source license.

This is a simple paragraph of text with some simple inline expressions such as $\sqrt\left\{2\right\} + x_1$, $\frac\left\{\pi^8\right\}\left\{2\right\}$, $\sqrt\left[n\right]\left\{\mathscr L\text{'}\right\}$ or $\sum_\left\{i=1\right\}^n \hat\left\{f\right\}\left(i\right)$. Some fonts support old style numbers 0123456789 (vs 0123456789) or calligraphic letters $\mathcal\left\{A\right\}$ (vs $\mathscr\left\{A\right\}$).
Here are some display expressions: $𝐄⇀={0𝐤^,z>d/2−σ2ε0𝐤^,d/2>z>−d/20𝐤^,z<−d/2\vec{\mathbf{E}} = \left\{ \begin{array}{l l} 0 \hat{\mathbf{k}}, & z > d/2 \\ -\frac{σ}{2ε_0} \hat{\mathbf{k}}, & d/2 > z > -d / 2 \\ 0 \hat{\mathbf{k}}, & z < -d/2 \\ \end{array} \right.$ $∫−∞+∞16sin(2x+π)5(x2+2x+5)2dx=πsin(2)e4\int_{-\infty}^{+\infty}\frac{16\sin(2x+\pi)}{5(x^{2}+2x+5)^{2}}dx=\frac{\pi \sin(2)}{e^{4}}$ followed by inline expressions like $\sqrt\left[p\right]\left\{\frac\left\{x+y+z\right\}\left\{\alpha^1_2 - \beta_0 - \frac\left\{\sqrt\left\{\zeta\right\}\right\}3\right\}\right\}$ or $\mathfrak\left\{gl\right\}\left(\mathbb\left\{R\right\}\right)$. More display expressions: \begin\left\{aligned\right\} V\left(R\right) &= \int_\left\{\varphi=0\right\}^\left\{2 \pi\right\} \int_\left\{\theta=0\right\}^\left\{\pi\right\} \int_\left\{r=0\right\}^\left\{R\right\} r^2 \sin\left(\theta\right) dr d\theta d\varphi \\ &= \left\left( \int_\left\{\varphi=0\right\}^\left\{2 \pi\right\} d\varphi \right\right) \left\left( \int_\left\{\theta=0\right\}^\left\{\pi\right\} \sin\left(\theta\right) d\theta \right\right) \left\left( \int_\left\{r=0\right\}^\left\{R\right\} r^2 dr \right\right) \\ &= \left\left[ \varphi \right\right]_\left\{\varphi=0\right\}^\left\{2 \pi\right\} \left\left[ -\cos\left(\theta\right) \right\right]_\left\{\theta=0\right\}^\left\{\pi\right\} \left\left[ \frac\left\{r^3\right\}\left\{3\right\} \right\right]_\left\{r=0\right\}^\left\{R\right\} \\ &= \frac\left\{4\right\}\left\{3\right\} \pi R^3 \end\left\{aligned\right\} $\det\left(A\right) = \sum_\left\{\sigma \in S_n\right\} \epsilon\left(\sigma\right) \prod_\left\{i=1\right\}^n a_\left\{i,\sigma\left(i\right)\right\}$ $I_n = \mathbb\left\{1\right\}_n = \begin\left\{pmatrix\right\} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 1 \end\left\{pmatrix\right\}$