# mathml.css

## Basic Examples

Inline equation: $x$

Display equation: $x$

Fraction: $\frac{x}{2}$

Binom: $\left(\genfrac{}{}{0}{}{n}{k}\right)$

Subcript and Superscripts: ${x}_{2}+{y}^{3}+{a}_{1}^{2}$

Multiscripts: ${}_{5}{}^{6}{}_{7}{}^{8}\text{BASE}_{1}^{2}{}_{3}{}^{4}$

Underscripts and Overscripts: $\underset{2}{x}+\stackrel{3}{y}+\underset{1}{\overset{2}{a}}$

Roots: $\sqrt{x}+\sqrt[3]{x}$

menclose element: $\overline{)\text{top}}\overline{)\text{bottom}}\overline{)\text{left}}\overline{)\text{right}}\overline{)\text{madruwb}}\overline{\text{actuarial}\hspace{.2em}|}\overline{)\text{box}}\overline{)\text{roundedbox}}\overline{)\text{circle}}\overline{)\text{horizontalstrike}}\overline{)\text{top left horizontalstrike}}$

table: $|\begin{array}{ccc}1& 2& 3\\ 4& 5& 6\\ 7& 8& 9\end{array}|=0$

Token elements: $x\phantom{\rule{0ex}{0ex}}\text{such that}\phantom{\rule{0ex}{0ex}}x\le 10$ ; $"x"$ ; $[x)$

mathvariants: $\mathrm{normal}\mathbf{\text{bold}}\mathit{\text{italic}}\mathbit{\text{bold-italic}}\mathsf{\text{sans-serif}}\mathtt{\text{monospace}}\mathbit{\text{bold-italic}}\mathbsf{\text{bold-sans-serif}}\mathsfit{\text{sans-serif-italic}}\mathbsfit{\text{sans-serif-bold-italic}}$

phantom element: $x+\phantom{\text{phantom}}y$

merror element: $\text{missing argument}$

annotation: $\frac{x}{y}$

## More complex examples

$\frac\left\{x^2\right\}\left\{a^2\right\} + \frac\left\{y^2\right\}\left\{b^2\right\} = 1$ $\sum_\left\{n=1\right\}^\left\{+\infty\right\} \frac\left\{1\right\}\left\{n^2\right\} = \frac\left\{\pi^2\right\}\left\{6\right\}$ $x = \frac\left\{-b\pm\sqrt\left\{b^2-4ac\right\}\right\}\left\{2a\right\}$ $f\left(x\right)=\sum_\left\{n=-\infty\right\}^\infty c_n e^\left\{2\pi i\left(n/T\right) x\right\} =\sum_\left\{n=-\infty\right\}^\infty \hat\left\{f\right\}\left(\xi_n\right) e^\left\{2\pi i\xi_n x\right\}\Delta\xi$ $\Gamma\left(t\right) = \lim_\left\{n \to \infty\right\} \frac\left\{n! \; n^t\right\}\left\{t \; \left(t+1\right)\cdots\left(t+n\right)\right\}= \frac\left\{1\right\}\left\{t\right\} \prod_\left\{n=1\right\}^\infty \frac\left\{\left\left(1+\frac\left\{1\right\}\left\{n\right\}\right\right)^t\right\}\left\{1+\frac\left\{t\right\}\left\{n\right\}\right\} = \frac\left\{e^\left\{-\gamma t\right\}\right\}\left\{t\right\} \prod_\left\{n=1\right\}^\infty \left\left(1 + \frac\left\{t\right\}\left\{n\right\}\right\right)^\left\{-1\right\} e^\left\{\frac\left\{t\right\}\left\{n\right\}\right\}$ $\mathfrak\left\{sl\right\}\left(n, \mathbb\left\{F\right\}\right) = \left\\left\{ A \in \mathscr\left\{M\right\}_n\left(\mathbb\left\{F\right\}\right) : \operatorname\left\{Tr\right\}\left(A\right) = 0 \right\\right\}$ $x^2 y^2$ $\multiscripts\left\{_2\right\}\left\{F\right\}\left\{_3\right\}$ $\frac\left\{x+y^2\right\}\left\{k+1\right\}$ $x+y^\left\{\frac 2 \left\{k+1\right\}\right\}$ $\frac\left\{a\right\}\left\{b/2\right\}$ $\displaystyle a_0 + \frac\left\{1\right\}\left\{\displaystyle a_1+\frac\left\{1\right\}\left\{\displaystyle a_2+\frac\left\{1\right\}\left\{\displaystyle a_3+\frac\left\{1\right\}\left\{\displaystyle a_4\right\}\right\}\right\}\right\}$ $\binom\left\{n\right\}\left\{k/2\right\}$ $\binom\left\{p\right\}\left\{2\right\} x^2 y^\left\{p-2\right\} - \frac\left\{1\right\}\left\{1-x\right\} \frac\left\{1\right\}\left\{1-x^2\right\}$ $\sum_\left\{\substack\left\{ 0 \le i \le m \\ 0 < j < n \right\}\right\} \left\{P\left(i,j\right)\right\}$ $x^\left\{2y\right\}$ $\sum_\left\{i=1\right\}^p \sum_\left\{j=1\right\}^q \sum_\left\{k=1\right\}^r \left\{a_\left\{i j\right\} b_\left\{j k\right\} c_\left\{k i\right\}\right\}$ $\sqrt\left\{1+\sqrt\left\{1+\sqrt\left\{1+\sqrt\left\{1+\sqrt\left\{1+\sqrt\left\{1+\sqrt\left\{1+x\right\}\right\}\right\}\right\}\right\}\right\}\right\}$ $\left\left( \frac\left\{\partial^2\right\}\left\{\partial x^2\right\} + \frac\left\{\partial^2\right\}\left\{\partial y^2\right\} \right\right) \left\{| \varphi\left(x+ i y\right)|\right\}^2 = 0$ $2^\left\{2^\left\{2^x\right\}\right\}$ $\int_1^x \frac\left\{dt\right\}\left\{t\right\}$ $\iint_D \left\{dx dy\right\}$ $f\left(x\right) = \begin\left\{cases\right\} 1/3 & \text\left\{if\right\} \quad 0 \leq x \leq 1; \\ 2/3 & \text\left\{if\right\} \quad 3 \leq x \leq 4; \\ 0 & \text\left\{elsewhere\right\}. \end\left\{cases\right\}$ $y_\left\{x^2\right\}$ $\begin\left\{pmatrix\right\} \begin\left\{pmatrix\right\} a & b \\ c & d \end\left\{pmatrix\right\} & \begin\left\{pmatrix\right\} e & f \\ g & h \end\left\{pmatrix\right\} \\ 0 & \begin\left\{pmatrix\right\} i & j \\ k & l \end\left\{pmatrix\right\} \end\left\{pmatrix\right\}$ $\det \begin\left\{vmatrix\right\} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_\left\{n+1\right\} \\ c_2 & c_3 & c_4 & \dots & c_\left\{n+2\right\} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_\left\{n+1\right\} & c_\left\{n+2\right\} & \dots & c_\left\{2n\right\} \end\left\{vmatrix\right\} > 0$ $y_\left\{x_2\right\}$ $x^31415_92 + \pi$ $x^\left\{z^d_c\right\}_\left\{y_b^a\right\}$ $y_3\text{'}\text{'}\text{'}$ \begin\left\{aligned\right\} \dot\left\{x\right\} & = \sigma\left(y-x\right) \\ \dot\left\{y\right\} & = \rho x - y - xz \\ \dot\left\{z\right\} & = -\beta z + xy \end\left\{aligned\right\} \begin\left\{aligned\right\} \dot\left\{x\right\} & = \sigma\left(y-x\right) \\ \dot\left\{y\right\} & = \rho x - y - xz \\ \dot\left\{z\right\} & = -\beta z + xy \end\left\{aligned\right\} $\mathbf\left\{V\right\}_1 \times \mathbf\left\{V\right\}_2 = \begin\left\{vmatrix\right\} \mathbf\left\{i\right\} & \mathbf\left\{j\right\} & \mathbf\left\{k\right\} \\ \frac\left\{\partial X\right\}\left\{\partial u\right\} & \frac\left\{\partial Y\right\}\left\{\partial u\right\} & 0 \\ \frac\left\{\partial X\right\}\left\{\partial v\right\} & \frac\left\{\partial Y\right\}\left\{\partial v\right\} & 0 \end\left\{vmatrix\right\}$ $P\left(E\right) = \left\{n \choose k\right\} p^k \left(1-p\right)^\left\{ n-k\right\}$ $\frac\left\{1\right\}\left\{\Bigl\left(\sqrt\left\{\phi \sqrt\left\{5\right\}\right\}-\phi\Bigr\right) e^\left\{\frac25 \pi\right\}\right\} = 1+\frac\left\{e^\left\{-2\pi\right\}\right\} \left\{1+\frac\left\{e^\left\{-4\pi\right\}\right\} \left\{1+\frac\left\{e^\left\{-6\pi\right\}\right\} \left\{1+\frac\left\{e^\left\{-8\pi\right\}\right\} \left\{1+\ldots\right\} \right\} \right\} \right\}$ $1 + \frac\left\{q^2\right\}\left\{\left(1-q\right)\right\}+\frac\left\{q^6\right\}\left\{\left(1-q\right)\left(1-q^2\right)\right\}+\cdots = \prod_\left\{j=0\right\}^\left\{\infty\right\}\frac\left\{1\right\}\left\{\left(1-q^\left\{5j+2\right\}\right)\left(1-q^\left\{5j+3\right\}\right)\right\}, \quad\quad \text\left\{for\right\} \quad |q| < 1.$ \begin\left\{aligned\right\} \nabla \times \vec\left\{\mathbf\left\{B\right\}\right\} -\, \frac1c\, \frac\left\{\partial\vec\left\{\mathbf\left\{E\right\}\right\}\right\}\left\{\partial t\right\} & = \frac\left\{4\pi\right\}\left\{c\right\}\vec\left\{\mathbf\left\{j\right\}\right\} \\ \nabla \cdot \vec\left\{\mathbf\left\{E\right\}\right\} & = 4 \pi \rho \\ \nabla \times \vec\left\{\mathbf\left\{E\right\}\right\}\, +\, \frac1c\, \frac\left\{\partial\vec\left\{\mathbf\left\{B\right\}\right\}\right\}\left\{\partial t\right\} & = \vec\left\{\mathbf\left\{0\right\}\right\} \\ \nabla \cdot \vec\left\{\mathbf\left\{B\right\}\right\} & = 0 \end\left\{aligned\right\}